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Absorbing-Boundary Conditions Using Perfectly
Matched-Layer (PML) Technique for
Three-Dimensional TLM Simulations

Nestor Pe˜na and Michel M. Ney,Senior Member, IEEE

Abstract—This paper describes the algorithm that interfaces
the three-dimensional (3-D) transmission-line matrix (TLM) with
an absorbing-boundary condition (ABC) based on the perfectly
matched-layer (PML) approach. The algorithm uses a coupling
between the TLM symmetrical condensed node (SCN) network
and a finite-difference approximation of the PML equations.
Examples are presented in scattering problems andS-parameter
characterization of discontinuities. Excellent results are found
even with absorbing walls located in the region of evanescent
waves. Absorption performance obtained are significantly su-
perior to ABC’s based on the one-way equationapproach and
currently used for TLM simulations. Finally, it is found that for
all tested situations, the algorithm is numerically stable.

I. INTRODUCTION

T HE USE OF numerical methods such as transmission-
line-matrix symmetrical condensed node (TLM–SCN)

[1] or the finite-difference time-domain (FDTD) method [2]
requires absorbing conditions at the limit of the computational
domain. These conditions have to simulate open space for
scattering problems or matched load in the case of guide
discontinuity problems, over a wide frequency range and
arbitrary wave incidence. Several authors have proposed the
absorbing-boundary condition (ABC) algorithm for TLM sim-
ulations. A pioneering work used Taylor’s series extrapolation
and compared it with Higdon’s ABC [3]. Other approaches
used stability factors to eliminate instabilities produced by
Higdon’s conditions [4]. More recently, super-absorbing con-
ditions [5] and the Johns matrix technique [6] were presented
for guided-wave problems. It is now generally recognized
that the perfectly matched-layer (PML) technique originally
proposed by B́erenger for FDTD field computations in open
space [7], [9] has performances that are significantly superior
to other techniques based on theone-way equationapproach
[3]–[5], [10]. However, the algorithm used for the standard
Yee’s scheme used in the FDTD method cannot be transposed
to the SCN–TLM algorithm in a straightforward manner.
Indeed, on a boundary which limits the TLM network, all
voltages reflected from the absorbing wall are required in
order to continue the iterative process. On the other hand, the
FDTD method requires the tangential components of either
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the electric or magnetic field on the absorbing boundary. In
spite of this apparent difference, the problem remains of the
same nature, as incident and reflected voltages at TLM arms
are linear combinations of electric and magnetic fields, which
are tangential at the cell faces [11]. Hence, based on this
equivalence, this paper presents the algorithm that interfaces
a TLM computational domain with a PML domain, in which
a finite-difference form of the governing equations is applied.

Theoretically, the PML technique is very attractive, as
excellent absorbing performances can be obtained over a wide
frequency range and at an arbitrary angle of incidence. More
importantly, the computational domain can be significantly
reduced as PML boundaries can be located relatively near
scatterers or discontinuities [12]. This demonstrates the ability
of this absorbing conditions to handle evanescent waves or
modes. Concerning the implementation of PML–TLM tech-
niques, two different approaches can be considered: coupling
of the TLM network with a FDTD–PML algorithm at the
interface [8] (nonunified algorithm) or implementation of a
TLM node valid in a PML region [9] (unified algorithm). There
is a potential advantage of the nonunified algorithm in terms
of computer-memory requirement: only 12 field components
(including PML subterms) have to be manipulated, whereas
at least 24 variables would be necessary for the SCN–TLM.
However, as the three-dimensional (3-D) SCN–TLM and the
FDTD Yee’s algorithms are not equivalent [13] in terms of
numerical dispersion characteristics, parasitic reflections can
be expected to occur at the TLM–FDTD PML interface.
Concerning this issue, recent work by Eswarappa and Hoefer
[14] (in which a coupling between the 3-D TLM and FDTD
method in homogeneous space is presented) tends to confirm
that excellent matching can be achieved. Keeping in mind
the potential gain in computer cost, the nonunified algorithm
alternative is chosen for implementation of the PML technique,
although this medium has characteristics which are completely
different from homogeneous physical media. This constitutes
the challenging aspect of this paper.

II. THEORY

The TLM numerically models electromagnetic-field time
evolution at the center of a cell from incidentand reflected

voltages at all ports of the node shown in Fig. 1(a). Thus, if
at time incident voltages are known in the whole
TLM network, reflected voltages at time can be
computed via a scattering matrix , which characterizes the
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(a)

(b)

(c)

Fig. 1. Location of field components and voltages in cells. (a) 12 incident
voltages of the basic unloaded TLM–SCN (reflected voltages are numbered
and polarized the same way). (b) TLM–SCN elementary cell with electric
field samples. (c) FDTD Yee’s cell.

node [11]

(1)

At the same time, the reflected voltages are transferred to the
neighboring nodes to become, in turn, the incident voltages for
the next time iteration. If instead of a node, reflected voltages
hit a boundary, appropriate conditions must be enforced to
determine incident voltages from that boundary which should

be entering the node for the next time iteration. For in-
stance, electric or magnetic walls return reflected voltages
with reflection coefficient 1 or 1, respectively. In fact, field
boundary conditions are applied since the total tangential-field
components, which corresponds to the linear combination of
incident and reflected voltages at the input arm, must vanish
in these two cases. Finally, the six field component values at
the center of the cell at time are computed from incident
voltages (see Fig. 1) as follows:

(2)

in the case of a cubic SCN cell ( )
and where is the free-space intrinsic impedance. Note
that for rectangular cells, stub loading must be used, and the
above expressions become more complex [11]. Nevertheless,
the proposed algorithm remains the same for rectangular cells.

One important feature of the TLM using the SCN (including
the hybrid symmetrical condensed node (HSCN) [15] and
symmetrical supercondensed node (SSCN) [16]) is the nature
of the voltages and . They are linear combinations of
field components tangential to the cell at the arm access, as
illustrated by Fig. 1(b), in which voltage numbering originally
used by Johns is utilized [1]. For instance, voltagesand
are given by

(3)

where is related to the characteristic impedance of the arm
in which voltages propagate, and its value depends on the type
of SCN node [11]. Hence, if at time , and
(or ) are known, one can uniquely determine from (3) the
incident voltage for the next iteration. The algorithm to
couple the TLM and FDTD–PML network is inspired from
the above relation.

First of all, let us consider the PML region and the governing
equations which amount to 12 in the 3-D case. Each field
component is separated into two terms whose time evolution
is related to spatial variations of other dual field components.
For instance, the time variation of in the
PML region becomes [7]

(4)

in which ( ) where are electric and
magnetic conductivities, respectively, satisfying the following
condition [7]:

(5)
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The approximation of (4) can be achieved by taking the FD
of subterms (for instance, and ) at the same location
and time as in the standard FDTD Yee’s scheme [17] [see
Fig. 1(c)]. The usual notation takes the origin of coordinates
at the edge of any cell and field samples are written as follows:

(6)

The next step is to take a different form of (4), using the
above notation (6). Then, since one wants to interface the
FDTD algorithm with the TLM, one expresses fields in terms
of voltages, which for cubic cell (without loss of generality)
and setting are given by

with (7)

with

(8)

where subscripts and refer to electric and magnetic,
respectively. Finally, after some algebraic manipulations, one
obtains the time evolution of field subterms in terms of the
following voltages:

(9)

where with . Note
that unlike the procedure followed in [7] where an exponential
approximation was used for the FDTD–PML, an ordinary
central-difference scheme is used here [18].

Now, suppose that there exists an interface between TLM
and FDTD–PML networks parallel to the plane at co-
ordinate . In order to continue the iteration process
in the PML region, it is necessary to know the electric-field
tangential components on this interface [Fig. 2(a)]. Therefore,
according to (9), one has to determine the magnetic-field
tangential components in the plane located at coordinate

and the magnetic-field normal components at the
plane , but with time delay to remain consistent
with Yee’s scheme [Fig. 2(b)]. Finally, the reflected impulse
from the interface to the adjacent TLM node is computed from

(3) in which interpolated tangential electric-field values in the
FDTD network are inserted, yielding

(10)

as illustrated by Fig. 2(c). The above procedure is applied
again for the next time iteration. One can notice that the
proposed coupling algorithm strictly enforces the continuity
of magnetic- and electric-field tangential components in the
plane and , respectively. Also, linear
spatial variation is assumed for field-component interpolation.
Note that the above procedure is general as the subterms are
not directly involved, and it also straightforwardly applied to
the basic coupling TLM–FDTD as presented in [14]. However,
the proposed coupling algorithm is different from the one
presented in [14] in two aspects: the present algorithm involves
a region which extends over half a cell (minimum) instead of
two cells and the new incident voltage vector is computed by
field continuity conditions at the interface instead of at the
cell center. However, one cannot evaluate the impact of these
differences as this paper is devoted to implementing PML with
TLM computations rather than interfacing the TLM and FDTD
method.

III. RESULTS

The first step to evaluate the reflection performance of
the proposed algorithm is to consider the empty WR-28
rectangular waveguide ( mm ) illustrated
in Fig. 3, which is terminated at both ends with a PML
region. The dominant mode is generated by a current
sheet [11], with amplitude-modulated Gaussian-pulse time
variation (central frequency: 32.5 GHz, 15 GHz bandwidth),
located near one PML boundary. The reflection coefficient
was computed with reference to an infinitely long waveguide.
A parabolic profile ( S/m) was used for the
PML regions and comparison with a full-FDTD (uniform
FDTD algorithm) simulation under the same conditions is also
shown in Fig. 3. If the TLM FDTD–PML algorithm yields
excellent performance with reflection level below55 dB
over the full operating range, much better performance is still
obtained with the full FDTD algorithm. This difference can be
explained by the nonuniform nature of the proposed algorithm,
as the different dispersion behavior between TLM and FDTD
networks may play a significant role [12]. The source of local
reflections may also be triggered by interpolation processes
at the interface between TLM and FDTD–PML networks.
However, the reflection level is much below the one obtained
by other ABC’s applied to TLM computations [3].

The next step is to evaluate the reflection performance when
evanescent modes are present near the TLM-PML interface for
a true 3-D problem. Consider the capacitive iris in a WR-28
rectangular waveguide, as illustrated in Fig. 4. It is proposed to
compute the -parameter over the whole operating range of
the guide by exciting the structure under the same conditions
(as with the previous example). The TLM–PML interface is
purposely located in the region where evanescent modes
and ( are no longer negligible. However, in order
to directly extract without special treatment for retrieving
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(a)

(b)

(c)

Fig. 2. Illustration of the various steps of the algorithm. (a)Phase I: In the TLM network, the total fieldEn, Hn at the center of the cell, are computed
from the incident wavesan�1=2m by (2). In the FDTD network, theHn-field components are computed with the standard algorithm. (b)Phase II:
Reflected voltages are computed via the standard TLM algorithm.H

n-components required by the FDTD network to computeEn+1=2 on the interface
are interpolated between two adjacent TLM cells. (c)Phase III: TangentialE-components required by the TLM are interpolated from the FDTD values
at the cell edges on the interface. TLM impulses are then transferred, except at arms normal to the interface where they are computed from (10). The
procedure is now ready for Phase I of the next time-step.

the dominant mode [6], the PML and the excitation on the left
are located sufficiently remote from the iris. Finally, in order to
minimize coarseness error, results from two simulations with
decreasing cell size and (Fig. 4),
respectively, were first performed. Linear extrapolation for

was then applied. Fig. 5 shows the -coefficient
magnitude and phase, respectively, in which results obtained

by a full FDTD simulation and the Marcuvitz equivalent-
circuit formula [19] are included for comparison. Corrections
were made to obtain an identical reference plane for all
cases. One can notice the excellent agreement between the
various approaches and also the slightly better convergence
for the full-FDTD algorithm as the step size is reduced.
However, extrapolated values are almost identical in both
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Fig. 3. ABC’s reflection performance and geometry for the case of an empty
WR-28 waveguide (L = 60�l and� = 25�l, �max = 25 S/m).

Fig. 4. Geometry for capacitive iris S11-parameter computation
(�l = a=66, �max = 50 S/m).

cases. The discrepancy with the FDTD can be explained by
the presence of metallic edges for which the TLM produces
coarseness error superior to the FDTD. This peculiarity, which
is not addressed in this paper, was investigated by several
authors [6], [20], and solutions to overcome the problem were
proposed. However, as the mesh size is reduced, discrepancies
between both methods tend to vanish. Finally, one can notice
the good performance of the PML located near discontinuities
where nonnegligible evanescent modes prevail (mostly the

in this case). Fig. 6 clearly shows that at the PML
interface location, evanescent modes are not negligible and
are unperturbed by the presence of the PML as compared
to the benchmark solution. It is worth mentioning that yet
unperturbed evanescent waves do not experience additional
attenuation from the PML medium. Thus, one has to make
sure that the layer thickness is sufficiently large, especially
when one gets near cutoff. This issue is addressed in a paper
by Fanget al. [21].

The proposed algorithm is applied to the scattering of a
perfectly conducting cube (Fig. 7) and compared with a field
integral equation solved by the method of moments (MoM) for
which no ABC is required. This problem was also investigated
with the FDTD method using the second-order Mur’s ABC
[22], as well as with the TLM using Higdon’s and Taylor’s
ABC [3]. For the FDTD method, the cube of normalized
size was sampled by 20 cells and the ABC located
at 15 (0.75 ) from the cube. For TLM simulations, the
cube was sampled with 12cells and ABC’s were located
at 15 (1.25 ) from the cube. Again to confirm the ability
of the algorithm to handle evanescent waves, the TLM–PML
interface is placed at only 5 (0.24 ) from the scatterer.

(a)

(b)

Fig. 5. ComputedS11 for the geometry illustrated in Fig. 4 with comparison
between different approaches. (a) Magnitude. (b) Phase.

Fig. 6. Longitudinal distribution of theE-field magnitude in the middle of
the waveguide in the case illustrated in Fig. 4. Benchmark solution (solid
line). With PML interface (crosses).

In all cases, equivalent Huygens surface [3], [22] was used
for excitation. For the last case, TLM–PML interfaces were
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Fig. 7. Geometry for perfectly conducting cube (dimensionS) scattering
problem.

(a)

(b)

Fig. 8. Current density distribution along pathab0c0d. (a) Magnitude nor-
malized toHinc and (b) phase difference relative to pointa (see Fig. 7).

located only at 2 from the equivalent source surface.
Finally, the PML thickness was 12 cells with a 10-reflection
factor at normal incidence.

The current density on the cube is determined from the
tangential magnetic-field components, and a fast Fourier trans-
form (FFT) is performed to obtain current values at a location
over a wide frequency range. Fig. 8 shows the comparison
between the proposed algorithm and the MoM (32 triangles
per face) [22] for the current density along the path in
both magnitude and phase (normalized frequency ). In
Fig. 9, the current density component on the lateral side of
the cube (path ) is also shown. Excellent agreement can

(a)

(b)

Fig. 9. Current densityJz distribution along the lateral pathabcd. (a)
Magnitude normalized toHinc and (b) phase difference relative to pointa
(see Fig. 7).

be observed and the TLM perfectly reproduces the singularity
which occurs at the cube edges [Fig. 9(a)]. In addition, one
may again stress that as compared to other ABC’s developed
so far for the TLM, a significant gain in computer memory
is achieved as PML boundaries are located relatively near the
scatterer. Note that results may be improved by optimizing the
PML conductivity profile [12]. Finally, no instabilities were
observed during long-term simulations.

IV. CONCLUSIONS

Bérenger’s PML absorbing condition was implemented for
3-D-TLM field computations. A coupling algorithm between
the SCN–TLM and the PML region was described. It is
based on an FD approximation of the PML equations and
a proper interfacing with the TLM algorithm. The so-called
nonuniform algorithm involves the junction between networks
with different numerical dispersion properties. As a result,
performances (although very good) do not reach the level
of the full FDTD algorithm. This can be explained by the
interpolation which is required at the boundary to couple
the TLM and the FDTD–PML algorithms and the difference
in the numerical dispersion of both networks. However, the
level of reflections is significantly below the one obtained
with the published ABC for the TLM so far. Simulation
results have shown that the proposed algorithm yields excellent
performances for both guiding and open structures. In addition,
the ABC can be placed relatively close to discontinuities or
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scatterers where evanescent modes or waves prevail without
noticeable degradation of performances. Finally, long-duration
simulations have shown that the algorithm is stable in all tested
situations.
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